大语言模型(LLM)为基于文本的对话提供了强大的能力。那么,能否进一步扩展,将其转化为语音对话的形式呢?本文将展示如何使用 Whisper 语音识别和 llama.cpp 构建一个 Web 端语音聊天机器人。
系统概览
如上图所示,系统的工作流程如下:
用户通过语音输入。
语音识别,转换为文本。
文本通过大语言模型(LLM)生成文本响应。
最后,文本转语音播放结果。
系统实现
端侧的具体形态(如 web 端、桌面端、手机端)直接影响了第一步用户语言的输入,以及最后一步响应结果的语音播放。 在本文中,我们选择使用 Web 端作为示例,利用浏览器本身的语言采集和语音播放功能,来实现用户与系统的互动。
下图展示了系统架构:
用户通过 Web 端与系统交互,语音数据通过 WebSocket 传输到后端服务,后端服务使用 Whisper 将语音转换为文本,接着通过 llama.cpp 调用 LLM 生成文本响应,最后,文本响应通过 WebSocket 发送回前端,并利用浏览器的语音播放功能将其朗读出来。
Web 端
Web 端的实现主要依赖 HTML5 和 JavaScript。我们使用浏览器的 Web API 进行语音采集和语音播放。以下是简化的 Web 端代码示例:
#loading {
display: none; font-weight: bold; color: blue }
#response {
white-space: pre-wrap; }
Voice Chat AI
Loading...
AI Response: ← S01L14 – JSP中的转发与重定向 《极限竞速8》预购版本区别 →